My Way

Feb. 25,2010

Getting Web Content and pdf-Output from
One Source

Thomas A. Schmitz

ConTgXt's capabilities of typesetting xml allow you to use the same source document
for producing both a web page and typeset output. This tutorial will explain the basics
of how to use a ConTEXt environment that will process your xml file.

ting Web Content an

Sometimes, documents that you create will have to “live” in different formats. One
common requirement will be that you want to publish their content on the web and
have a beautifully typeset version for printing and easier reference. ConTEXt can
handle xml files, and with the advent of MKkIV, it has sophisticated features to filter
and manipulate xml documents."

In this MyWay, I will describe the process of setting up a relatively simple xhtml
document so that it can be typeset by ConTgXt. This article is the by-product of
something I had to set up at my university department: we wanted to publish a doc-
ument with reading assignments and bibliographical information for our students.
This document will be published on our department’s website,” but I also wanted a
pdf-version that students could print out for easier reference. Maintaining and sync-
ing two different source files (one in html for the website, one in TgX for typesetting)
is terribly inefficient and error-prone, so I decided that I wanted to set up a process to
typeset the xhtml file with ConTEXt. The document itself is rather simple: it contains
text, a few tables, and a few images. It is given as an example that should allow and
motivate you to delve further into this subject.

Our source document is coded in “strict” xhtml since the specs for this format (esp.
that all elements be properly nested and closed) make it easier to process documents
with ConTEXt than “pure” html. We will look at the structure of this xhtml document
step by step. After the DOCTYPE declaration and the required <head> and <body>
elements, our document begins with a heading and an introduction which contains
just text:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.org/TR/xhtml11/DTD/xhtmll-strict.dtd">

<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<title>
Our Document
</title>
</head>
<body>

<h1>Important Advice</hi>

<h2>Introduction</h2>

i you are interested in the details, chapters XVII and XXIII of the mk manual (http:/ /www.pragma-ade
.nl/general /manuals/mk.pdf) contain lots of fascinating background information. A manual for xml in
MKIV can be found at http:/ /www.pragma-ade.com/general/manuals /xml-mkiv.pdf.

Where it will be part of our university’s CMS system, but this is irrelevant here.

<p>The first paragraph. It contains <g>quoted text</qg>,
emphasized text which should be rendered in
italics, and bold text.</p>
<body>
<html>

If we want to process this file, we will need to tell ConTgXt what to do with the
different elements and with the document as a whole. For this, we need to write
an environment file. If you have ever written something in html, you can think of
this file as the equivalent of an external css file. As you may have heard, ConTgXt
makes use of LuaTEX, which will completely replace pdfIEX in time. Many parts of
ConTgXt now exist in an older version (for good old pdfTEX), which is called MKII,
and a newer version (for LuaTgX), which is called MKIV. In most areas, there are no
big differences in the user interface, but since LuaTgX is far superior in this area,
Hans Hagen has rewritten the entire xml handling mechanism from scratch. The
new code allows more control over what to do with different xml elements, and
it is much faster for complex documents. For the time being, there is not enough
documentation for beginners — hence this MyWay. It will describe how to code an
environment for use with MkIV. Our environment will basically contain two parts:

1. Setups for handling the different xhtml elements, tags, and attributes,

2. and the setup for typesetting our document, i.e., the information which is nor-
mally contained in the preamble of your ConTgXt documents.

With that in mind, let us begin by looking at the different elements of our environ-
ment file. I will explain what they do as we go.

\startxmlsetups xml:oursetups
\xmlsetsetup{\xmldocument}{*}{-}
\xmlsetsetup{\xmldocument}{html 'body hl /h2 plem/q/b}{xml:*}

\stopxmlsetups

\xmlregistersetup{xml:oursetups}

We begin by defining our setups. The line \startxmlsetups xml:oursetups de-
fines an environment for our set and names it oursetups. The two lines within
this environment tell ConTgXt what to do with the different elements: the line
\xmlsetsetup{\xmldocument}{*}{ } tells it to disregard everything; this way,
only elements that we name explicitly will be typeset. In our case, this is useful be-
cause we do not want the “title” element of the header to be typeset. The next line
lists all the elements which we do want to be processed and typeset. As we will de-
fine further elements, we will have to remember to add them to this line, or they will
be silently disregarded! Finally, we “register” our setup under its name.

Next, we will tell ConTgXt what it should do with the different elements:

nog auQ woij mdmnQ

Web Conten

\startxmlsetups xml:html
\xmlflush{#1}
\stopxmlsetups

\startxmlsetups xml:body
\xmlflush{#1}
\stopxmlsetups

\startxmlsetups xml:hl
\chapter{\xmlflush{#1}}
\stopxmlsetups

\startxmlsetups xml:h2
\section{\xmlflush{#1}3}
\stopxmlsetups

\startxmlsetups xml:p
\xmlflush{#1}\par
\stopxmlsetups

\startxmlsetups xml:em
\dontleavehmode{\em \xmlflush{#1}}
\stopxmlsetups

\startxmlsetups xml:q
\quotation{\xmlflush{#1}}
\stopxmlsetups

\startxmlsetups xml:b
\dontleavehmode{\bf\xmlflush{#1}}
\stopxmlsetups

These different setup elements are the most important part of our environment file.
They tell ConTEXt how to translate xhtml tags into ConTgXt commands. If you look
at these definitions, you will see that they are not difficult to understand: for every
element you want processed, you need a setup command. Every element is prefixed
by the xml: namespace; the name of the element follows. The first two commands
tell ConTgXt to simply “flush,” i.e., transmit the content of the <html> and <body>
elements to the typesetting engine. Things become more interesting with the dif-
ferent headers: here, we want headings at the level of <h1> to be typeset as chap-
ter headings in ConTgXt. That’s what the line \chapter{\xmlflush{#1}} does: it
takes the content between the <h1></h1> tags and “flushes” it as the argument of
the \chapter command. <p> elements are paragraphs; hence, they are flushed and
a \par is added at the end. You'll see easily what the other setups do. Since switches
such as \em and \bf need to be inside groups, we add an extra pair of braces; since

they might make problems if they start a paragraph, we have to be cautious and add
a \dontleavehmode at the beginning.

After these xml setups, the second part of our environment file contains just the
normal setup for typesetting. If you are a little bit familiar with ConTEXt, this should
be easy to understand, and I won’t go into the details here:

\usetypescript [termes]
\setupbodyfont [termes, 11pt]

\setupbodyfontenvironment [default] [em=italic]

\setuphead [chapter] [page=yes,
header=empty,
align=middle,
after={\blank[line]}]

\setuphead[section] [page=no,
align=middle,
number=no,
before={\blank[2*1linel},
after={\blank[line]}]

\setupindenting[medium,yes]
This, then, is all you need if you want to process normal text in paragraphs and
headings. We can now typeset our file (which we name sample.xml) with this en-

vironment (which we call ourenvironment . tex) with this command:

context --environment=ourenvironment sample.xml

S auQ woij ndy

The output will be saved as sample.pdf, and it should show all the elements we
have defined. Things become a bit more complex when we want to build tables. In
the document I was writing, there were two types of table, one with two columns,
one with three columns. In html, this is not problematic since the browser will reflow
the text according to the width of the window. In a printed version, however, we
want more control over the relative width of the single table columns. In order to
achieve this, we need to distinguish between the two types of tables. We assign them
two different class attributes in our xhtml code:

<table class="threecol">
<tr>
<th>
Heading One
</th>
<th>

Heading Two

</th>
<th>
Heading Three
</th>
</tr>
<tr>
<td>
A Paragraph
</td>
<td>
A Title
</td>
<td>
An Explanation
</td>
</tr>
</table>
<table class="twocol">
<tr>
<td>
A
</td>
<td>
A lengthy paragraph, with <g>text in quotation marks</qg>
and all sorts of other stuff.
</td>
</tr>
<tr>
<td>
B
</td>
<td>
And yet another paragraph.
</td>
</tr>
</table>

The first thing we will have to remember is to add these elements to the top of our
environment so they will get processed:

\xmlsetsetup{\xmldocument}{html body hl h2 plem/q/bl/table tr th|/td}{xml:*}

This is important for all elements that we will use; I will assume that you remember
this from now on. But how can we typeset these tables? ConTgXt offers “Natural
Tables.”® They are quite similar in their setup to html tables, so it is relatively easy

® For details, see the Natural Tables manual at http:/ /pragma-ade.com/general/manuals/enattab.pdf.

to map this code to ConTEXt code. We will use the “class” attributes to define two
different setups:

\startxmlsetups xml:table
\doifelse {\xmlatt{#1}{class}} {threecol} {

\setupTABLE[c] [1] [align=right,width=.2\textwidth]
\setupTABLE[c] [2,3] [align=right,width=.4\textwidth]
\bTABLE [frame=on, split=yes]
\xmlflush{#1}
\eTABLE }
{
\setupTABLE[c] [1] [align=right,width=.05\textwidth]
\setupTABLE[c] [2] [align=right,width=.95\textwidth]
\bTABLE [frame=on, split=yes]
\xmlflush{#1}
\eTABLE
}

\stopxmlsetups

\startxmlsetups xml:tr
\bTR \xmlflush{#1} \eTR
\stopxmlsetups

\startxmlsetups xml:th
\bTD [align=middle,style=bold] \xmlflush{#1} \eTD
\stopxmlsetups

\startxmlsetups xml:td
\bTD \xmlflush{#1} \eTD
\stopxmlsetups

Let us look at this code in detail: first, we tell ConTgXt that we want to process
<table> elements:

\startxmlsetups xml:table
Then, we use a condition to process this element. The syntax for this conditional
in ConTgXtis \doifelse {stringl} {string2} {then ...} {else ...}:‘we

compare “stringl” to “string2.” If they are identical, the “then” branch is executed;
if they are different, the “else” branch is executed. The command

\doifelse {\xmlatt{#1}{class}} {threecol}

There is an excellent article by Taco Hoekwater on system macros at http://tex.aanhet.net/context/syst
-gen-doc.pdf; the same material is available on the ConTEXt wiki (http:/ /wiki.contextgarden.net/System
_Macros) as well.

Web Conte

thus compares the value of the attribute class of the current element (that’s what
\xzmlatt{#1}{class} expands to) with the string “threecol.” So: if the “class” at-
tribute is set to “threecol,” we set up a table in which the first column occupies 20 %
of the textwidth, columns two and three 40 %, respectively. If it is set to any other
value, we set up a table in which the first column holds 5 % of the textwidth and the
second column the remaining 95 %. (If we need more different types of tables, we
would have to nest such \doifelse macros).

The rest is straightforward: <th> elements are wrapped in \bTD \eTD pairs, and
are formatted as bold, centered text; <tr> and <td> elements are wrapped in the
corresponding commands for table rows and table cells for natural tables.

Let us lok at one further point: in my tables, I wanted some cells to span several
rows. How is this done? In xhtml, there is the rowspan attribute:

<table class="threecol">
<tr>
<td>
A
</td>
<td>
1
</td>
<td rowspan="3">
Three rows
</td>
</tr>
<tr>
<td>
B
</td>
<td>
2
</td>
</tr>
<tr>
<td>
C
</td>
<td>
3
</td>
</tr>
</table>

A similar effect can be achieved in a natural table in ConTgXt. The syntax here is
\td [nr=3]. So all we have to do is extract the value of the attribute of rowspan

and “feed” it to the nr argument in our ConTgXt table. But there is one further prob-
lem: if a <td> element does not have a rowspan attribute, its value does not exist,
of course. We must make sure that such a non-existent value is not transmitted to

the nr argument, or ConTEXt will complain about a “missing number.” We modify
our definition of the <td> element: at first, we test whether rowspan does have a
numerical value; if it does, we feed this number to ConTEXt. Again, we use one of
the nifty system conditionals that ConTgXt provides:

\startxmlsetups xml:td

\doifnumberelse
N\xmlatt{#1}{rowspan}t}
{\bTD [nr=\xmlatt{#1}{rowspan},align=1lohi] \xmlflush{#1} \eTD}
{\bTD \xmlflush{#1} \eTD}

\stopxmlsetups

You have probably understood what this code does: the command \doifnumberelse
takes three arguments. It checks whether the first argument is a number; here this
first argument is the attribute rowspan of the current element. If this is a number, it
will use this number as assignment for the nr attribute in ConTgXt’s table and flush
the content of the element between the table commands \bTD and \eTD. If it isn’t a
number (because the attribute doesn’t exist), it builds a “normal” table cell without
any additional arguments.

So much for tables. Let us now take a look at another interesting aspect of html:
embedding images. Here’s a typical way an image is embedded in html:

<p style="text-align:middle">

</p>

As you see, the element takes attributes which define the image to be in-
cluded, its width, and an alternative text which should appear in case the image
does not load. We can use this text for our image caption, and it is clear that we
will need the image name as well. However, there is a problem with the width pa-
rameter: in xhtml, it can be given either in pixels, in which case it will be given as
a number only, or in percent of the containing element. These cases need a special
treatment: if the width is given in pixels, we can easily use this number to give the
size in points, but we will have to add the unit pt. If it is given in percent, we will
have to get rid of the % sign (which would confuse the TEX engine) and convert it
to a format that ConTgXt uses, which is usually in the form 0.x\textwidth. This
conversion could be done in TgX, but since we are using LuaTgX, we have the conve-
nience of the Lua language, which we will use here. At first, we write a Lua function
that converts the value of the width attribute:’

" I'm grateful to Taco Hoekwater who provided help with the lua code.

nog auQ woij mdmnQ

Web Content a

ing

function getmeas(s)
if string.find(s, "[70-9]") then

s = s:sub(1,-2)
s =s / 100
s = s.."\\textwidth"
tex.sprint(tex.ctxcatcodes, s)
else
s = s.."pt"
tex.sprint(s)
end
end

Providing an introduction to the Lua language is beyond the scope of this MyWay;
I give just a few short explanations: Since the xhtml attribute width can either be a
number or a number with a percent sign, we know that any value which contains
more than just digits must be a percentage. The function getmeas takes a string s.
It then tests whether this string contains anything but digits (that’s what the line
if string.find(s, "[70-9]") does). If it contains anything but digits (i.e., dig-
its and a percent sign), the then branch is executed: first, we extract a substring
from our string s which extends from the first character to the last but one charac-
ter with the code s = s:sub(1,-2). This will thus give us the number, without
the % sign. We then divide this number by 100 (s = s / 100) and append the TgX
string \textwidth to it. Finally, we pass this new string (which now has the form
0.26\textwidth) to the LuaTEX engine. If our string s contains only digits, we
simply append the unit pt to it and pass it to LuaTgX; it now has the form 25pt.

We wrap this Lua function in a pair of \startluacode \stopluacode delimiters.
We can now finally write the setup for img element:

\startxmlsetups xml:img
\placefigure
[here]
(\xmlatt{#1}{src}]
{\xmlatt{#1}{alt}}
{\externalfigure[\xmlatt{#1}{src}]
[width=\ctxlua{getmeas ("\xmlatt{#1}{width}")}]1}
\stopxmlsetups

So: when TgX finds an img element, it will place a \placefigure command. It
will use the name of the image (which is given in the src attribute) as the iden-
tifier of this figure and the content of the alt attribute for the caption. Finally,
it will place the image itself as an \externalfigure, again using the content of
the src attribute and the content of the width attribute to calculate the width.
One last word about images: as you know, html can include both local images
and images retrieved from the web via URIs. You will be relieved to know that
the same is possible with ConTgXt: both \externalfigure [nameoflocalfigure]
and \externalfigure[http://www.someplace / someimage.jpgl will work.

As you see, ConTeXt MKIV offers rich possibilities of processing and manipulating
xml content. It is even possible to filter the content of the xml data and only typeset
content which matches certain criteria. Here’s an example:

\startxmlsetups xml:p
\xmltext{#1}{q}
\stopxmlsetups

What this setup does is: it looks at the element <p> and then only typesets subele-
ments of type <q> within this element. This may come in handy if you want to select
only certain elements from your file. A command that is even more powerful is
\xmlfilter; it can filter your xml data and only process it if it meets certain condi-
tions (only elements which have a certain attribute, or whose text contains a certain
string).

This MyWay was meant to whet your appetite. ConTeXt MKIV offers many sophis-
ticated options to filter, manipulate, and typeset xml files. This brief tutorial was
meant to give beginners a point where to start exploring these opportunities. If writ-
ing, editing, and maintaining documents which will end up on the web and which
should also be typeset is part of your workflow, you should definitely have a look at
these possibilities.

To make it easier for you to experiment, I have included the xml file and the envi-
ronment here. First the file sample.xml:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtmll-strict.dtd">

<html xmlns="http://www.w3.org/1999/xhtml">

<head>

<title>
Our Document

</title>

<style type="text/css">
table
{
width:100%;
border:2px solid black;
X
th
{
height :75px;
border:1px solid black
X
tr
{
height:50px;
b
td
{
border:1px solid black
3

</style>

</head>

<body>
<hi1>Important Advice</h1>
<h2>Introduction</h2>

<p>The first paragraph. It contains <g>quoted text</g>,
emphasized text which should be rendered in
italics, and bold text.</p>
<table class="threecol">
<tr>
<th>

Heading One
</th>
<th>
Heading Two
</th>
<th>
Heading Three
</th>
</tr>
<tr>
<td>
A Paragraph
</td>
<td>
A Title
</td>
<td>
An Explanation
</td>
</tr>
</table>
<table class="twocol">
<tr>
<td>
A
</td>
<td>
A lengthy paragraph, with <g>text in quotation marks</qg>
and all sorts of other stuff.
</td>
</tr>
<tr>
<td>
B
</td>
<td>
And yet another paragraph.
</td>
</tr>
</table>
<table class="threecol">
<tr>
<td>
A
</td>
<td>

1
</td>
<td rowspan="3">

Three rows
</td>

</tr>
<tr>
<td>

B
</td>
<td>

2
</td>

</tr>
<tr>
<td>

C
</td>
<td>

3
</td>

</tr>
</table>

<p style="text-align:center">

</p>

<p style="text-align:center">
<img src="http://wiki.contextgarden.net/skins/common/images/logo_circ_small
width="100" alt="The ConTeXt logo">
</p>
</body>
</html>

And here the environment ourenvironment . tex:
\startluacode

function getmeas(s)
if string.find(s, "[0-9]") then

s = s:sub(1,2)
s = s 100
s = s.."\\textwidth"

tex.sprint(tex.ctxcatcodes, s)

s = s.."pt"

tex.sprint(s)
end
end
\stopluacode

\startxmlsetups xml:oursetups
\xmlsetsetup{\xmldocument}{*}{-}
\xmlsetsetup{\xmldocument}{html body hl h2 plem/q bl/table tr /th/td img}r{x
\stopxmlsetups

\zmlregistersetup{xml:oursetups}

\startxmlsetups xml:html
\xmlflush{#1}
\stopxmlsetups

\startxmlsetups xml:body
\xmlflush{#1}
\stopxmlsetups

\startxmlsetups xml:hl
\chapter{\xmlflush{#1}}
\stopxmlsetups

\startxmlsetups xml:h2
\section{\xmlflush{#1}}
\stopxmlsetups

\startxmlsetups xml:p
\xmlflush{#1}\par
\stopxmlsetups

\startxmlsetups xml:em
\dontleavehmode{\em \xmlflush{#1}}
\stopxmlsetups

\startxmlsetups xml:q
\quotation{\xmlflush{#1}}
\stopxmlsetups

\startxmlsetups xml:b
\dontleavehmode{\bf\xmlflush{#1}}
\stopxmlsetups

\startxmlsetups xml:table
\doifelse {\xmlatt{#1}{class}} {threecol} {

\setupTABLE[c] [1] [align=right,width=.2\textwidth]
\setupTABLE[c] [2,3] [align=right,width=.4\textwidth]
\bTABLE [frame=on,split=yes]
\xmlflush{#1}
\eTABLE }
{
\setupTABLE[c] [1] [align=right,width=.05\textwidth]
\setupTABLE[c] [2] [align=right,width=.95\textwidth]
\bTABLE [frame=on, split=yes]
\xmlflush{#1}
\eTABLE
}

\stopxmlsetups

\startxmlsetups xml:tr
\bTR \xmlflush{#1} \eTR
\stopxmlsetups

\startxmlsetups xml:th
\bTD [align=middle,style=bold] \xmlflush{#1} \eTD
\stopxmlsetups

\startxmlsetups xml:td
\doifnumberelse {\xmlatt{#1}{rowspanl}}
{\bTD [nr=\zmlatt{#1}{rowspan},align=1lohi] \xmlflush{#1}
\eTD}
{\bTD \xmlflush{#1} \eTD}
\stopxmlsetups

\startxmlsetups xml:img
\placefigure [here]
(\xmlatt{#1}{src}]
{\xmlatt{#1}{alt}}
{\externalfigure [\xmlatt{#1}{src}] [width=\ctxlua{getmeas ("\xml
\stopxmlsetups

\usetypescript [termes]
\setupbodyfont [termes, 11pt]

\setupbodyfontenvironment [default] [em=italic]

\setuphead [chapter] [page=yes,
header=empty,
align=middle,
after={\blank[line]}]

\setuphead[section] [page=no,
align=middle,
number=no,
before={\blank[2*1ine]},
after={\blank[line]}]

\setupindenting[medium,yes]

